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Abstract We analyse the behaviour of the m i x a t e r  universe in the context of general relativity 
by applying methods from the geometric theory of dynamical systems in @e complex plane and 
in particular by using what is known as the Painlev6 test. We find that the singulwities of the 
mixmater model in the complex plane =e simple poles and the resonances, x e  -1.2. ’This 
shows t h a  chaotic behaviour may be absent in the mixmaster universe in general relativity. 
This analysis reinforces mme recent numerical experiments which point to the same wnclusion. 
We also Painlev6-test the Euclidean version of the Bianchi IX spacetime which includes the 
gravitational analogues of the Yang-Mills instanton solutions. We find that this system also has 
the Painlev6 property and this supports previous conclusions that the Euclidean Bianchi M field 
equations can be solved through Iacobi elliptic functions. 

1. Introduction 

The famous singularity theorems of general relativity as poineered by Hawking and Penrose 
in the late 1960s (see Hawking and Ellis (1973) for a review) pointed to the existence of 
spacetime singularities and the subsequent unpredictability of properties of spacetime near 
these regions of infinite density and temperature. However, the structure of spacetime near 
singular points naturally relates to the nature of cosmological singularities, but this issue is 
not addressed in the Hawking-Penrose theorems. 

During the past 25 years several different techniques have been developed for 
examining the nature of spacetime near singularities. These include the BKL approach, 
Hamiltonian methods, ergodic-theoretic methods, a dynamical systems approach and 
numerical experiments. 

The first method was developed by the Russian cosmologists Belinski, Khdamikov 
and Lifshitz (hereafter BKL) (see Belinski et al (1970) for a review). They used certain 
approximation techniques based on pertubation analysis to describe the evolution of the 
universe towards the singularity. BKL proved that the general evolution of the universe 
towards the Bianchi IX singularity is oscillatory and the number of these successive series 
of oscillations between the three scale factors of the anisotropic Bianchi IX model tends to 
infinity as t + 0. Misner (1969a,b,c) developed Hamiltonian methods to reformulate the 
problem. These methods are equivalent to the BKL analytic methods. The key feature 
of these Hamiltonian techniques is that the problem of solving the Einstein equations 
for homogeneous metrics (in our case Bianchi IX) becomes equivalent to that of tracing 
the motion of a particle, called the ‘universe point’, within a potential well, the walls of 
which are determined by the form of the three-curvature of the universe. These approaches 
revealed the extraordinary structure of the universe near the singularity and Misner coined 
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the expression ‘mixmaster universe’ for this particular model of the universe. Using ergodic 
theory, Barrow (1982) calculated the k-entropy for the associated one-dimensional map of 
the mixmaster dynamical system. This analysis established a direct relation between the 
properties of the mixmaster universe and those of chaotic dynamical systems. Techniques 
from dynamical systems theory applied by Bogoyavlenski (1982) and Wainwright and Hsu 
(1989), to general Bianchi types and, in particular, to the mixmaster universe (Bianchi IX) 
gave more insight into the complicated structure of these spaces. Thus the picture emerging 
from all these approaches has the mixmaster universe as a purely chaotic dynamical system 
with its evolution as t -+ 0 being unpredictable, stochastic and erratic. 

However, difficulties in accepting such a picture may arise for the following reasons. 
First, recent numerical evidence (e.g. Hobill eta1 1990) suggests that the mixmaster model 
has a very sensitive dependence upon initial conditions. For some initial conditions the 
model shows chaotic behaviour whereas other choices lead to regular solutions with no 
indications of chaos. This approach is based on the numerical calculation of the Liapunov 
exponehts for the mixmaster dynamics. Most calculations suggest that the system is not 
chaotic all the way to the singularity. However, we point out that there is no theoretical work 
in published form that backs all these~numerical results. Second, we note that, although the 
chaotic properties of the mixmaster universe were established by studying the associated 
onedimensional mixmaster map, the actual system is clearly three-dimensional and for its 
full description one should instead consider threedimensional Poincart maps! 

Motivated partly by the present contradictory status of the theory and partly by the 
suggestive results of the recent numerical experiments discussed above, we intend in this 
paper to look for integrability of the mixmaster dynamics through a purely analytic approach 
which has its root in the geometric theory of ordinary differential equations in the complex 
plane (see, for example, Hdle 1976). Our method is based, in particular, on the so-called 
Painlevt test which in turn has in recent years met with a renewal of interest since it has 
been applied to a plethora of dynamical systems with undeniable success. For reviews of 
the Painlev6 approach and applications, see Ramani eta1 (1989) and Bountis (1992). 

We apply in this paper the Painlevt test to the mixmaster universe (L.orentzian Bianchi 
IX spacetime) and also to the Euclidean Bianchi IX model (see below). We find that, indeed, 
both systems pass the Painlevt test, i.e. the only movable singularities that both systems 
show in the complex plane are simple poles. 

Now, it has been argued by many authors (for example, van Moerbeke 1988, Ablowitz 
et al 1980, Chang et a1 1982 and Bountis et a1 1982) that, if a physical system has the 
abovementioned Painlevt property, then it represents a completely integrable non-chaotic 
dynamical system. That is, if the only movable singularities that the system can exhibit in 
the complex plane are simple poles (no branch points, no essential singularities), then the 
real-time system is completely integrable. 

The organization of the paper is as follows. Section 2 serves mainly to establish notation. 
In section 3 we apply the Painlevt test to the Euclidean Yang-Mills equation as an example. 
Section 4 provides the Painlevt analysis of the mixmaster universe and we discuss our results 
in section 5. 

S Cotsakis and P G L Leach 

2. The model and notation 

The cosmological model we use is the homogeneous but anisotropic Bianchi type 
M spacetime or mixmaster universe. For the classification and further properties of 
homogeneous but anisotropic spaces see, for example, Landau and Lifshitz (1975). For 
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the physical motivation for studying the Bianchi IX model from the cosmological point of 
view, see Barrow (1982). 

The metric of the homogeneous-vacuum Bianchi IX model can be taken to be (see 
Landau and Lifshitz 1975) of the diagonal form 

ds - -- dt2 + yW@ dxa dxp 

yep = a:i& + a,2mamp + a,2n,np 

(1) 

(2) 

with 

where, a , ,  a2, a3 are the scale factors along the basis vectors 

1 = (sin z sin y .  cos z, 0) 

m = (- cosz sin y .  sin z ,  0) (3) 
n = (cosy, 0, 1). 

Here, xi = ( x .  y ,  z) and the coordinate ranges are 0 < x < 4rr, 0 < y < n and 0 < z < 2rr1 
The three-surfaces of the homogeneous type IX model are closed and have finite volume 
given by V = 16x2a~a2013. 

Then the Einstein equations for the diagonal type IX model can be written as follows 
(Landau and Lifshitz 1975, Barrow 1982): 

~ ~ 

201; = (a; - a:)’ - af 

(4) Zu;= (al  2 - a 3 )  2 2  - n, 4 

z(a, 1 + 01.2 + a3)” =~a;cf; +a;.; + a;.; 
201; = (a: - a;)’ -a! 

(5) 
where ’ := d/dt. Here we adopt the so-called logarithmic time which has been used 
extensively by many authors over the years and is related to the synchronous time coordinate 
t by the equation 

Typically the volume ala2a) grows like t and so (6) gives 7 - lnt. The scale factors 011,  

a2. 013 are the logarithms of a,, a2, a3. i .q~ol l  = h a ]  e a ,  = e@!, etc.~In r-time the 
cosmological singularity is at 7 = -W. We note also that the field equations (4) are the 
equations R: = 0, R; = 0, R: = 0 and equation (5) is the equation -R: = 0. 

For future reference we give the Euclidean version of the field equations (4). They are 

This system, which is the analytic continuation of the field equations (4) to complex time, 
was studied in Belinski et al (1978) and Berger and Spero (1983) in the hope of finding 
the gravitational analogue of the instanton solutions of the classical Yang-Mills theory. 
Equations (7) have the form of the Euler equations for an asymmetric top but with unusual 
moments of inertia (Belinski et a1 1978). The general solution of this system can be found 
in terms of Jacobi elliptic functions. It is interesting to note (Cotsakis 1990) that these 
equations have exactly the same form as those investigated by Kovalevskaya (1889). 
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3. Painlev6 method and the Yang-Mills field 

Many known integrable, non-chaotic dynamical systems have the Painlev6 property. For 
example, the integrable cases of the Hhon-Heiles system are all known to be of Painlev6 
type (Chang et a1 1982, Tabor 1989) and also the integrable cases of the To& lattice with 
N = 2 and 3 can all be recovered by using the Painlev6 test (Bountis er al 1982). 

As an example to see how the Painlev6 method works consider the system (Cotsakis 
1990) 

S Cotsakis a d  P G L Leach 

(8) 

This system, under the assumption that the potentials depend only on time, and under a more 
restrictive ansatz Watinyan eta1 1981, Savvidy 1984), corresponds to the Euclidean Yang- 
Mills equations. It is also known to be integrable since it contains the famous instanton 
solutions first discovered by Polyakov, (1975) and Belavin et al (1975). We are interested 
to see whether or not the system (8) satisfies the Painlev6 property. For this, let us first find 
the dominant behaviour. We substitute into (8) the forms 

2 ,  X N  = x y  y" = x  y .  

x = f f z p  y=Bz '  (9) 

and obtain 

To determine the resonances we substitute 

x = LY-' + yzr-1 y = j 3 - L  + szr-1 (12) 

into (8) and equate the terms linear in y and S (all terms are dominant) to zero to obtain 

[ (r - 
- Bz (r - l)(r -2ffg -2) -a *][;]=o. 

Equation (13) has a non-trivial solution if 

r = -I, 4,4(3 5 i&). (14) 

The presence of the complex resonances indicates that the system (8) does not possess the 
Painlev6 property. However, the resonance at r = 4 does lead to the two-parameter solution 

1 I 
Z 6 26 

1 +a24 + -(azJ)Z+ -(az4)3 + . . . 
I + U Z ~ + ; ( U Z ~ ) ~ + - ( U Z ~ ) ~ + . . .  1 1 

Z 26 

where a is an arbitrary constant, i.e. up to a possible sign difference x = y ((8) is invariant 
under the discrete transformation x + - x ,  y -+ -y). In this case the solution of (8) can 
be expressed in terms of Jacobi elliptic functions. 

We now turn to the main part of the paper which is the Painlev6 analysis of the Bianchi 
JX spacetime in both the Euclidean and the Lorentzian versions. 
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4. Painlevd analysis of the mixmaster universe 

We first focus on the Euclidean Bianchi M model. As we shall shortly see, the Painlevd 
test for the mixmaster universe can be applied as in the Euclidean case. 

Under the change of variables 

a : = u ~  a i  = U a: = w (16) 
the Euclidean Bianchi, M equations become 

U U n  - U 0  = U4 - u’(v - w) ’ et cyc 
Substituting into (15) the forms 

u=olzp v = p z y  U = yz‘ (18) 

(19) 

2 p  - 2 = 4 p  = 2 p + 3  = 2 p + q + r  = 2 p + 2 r  . et cyc. (20) 

(21) p = q  = j -  = -1. 

we obtain 

Balancing these terms to leading order we find that 

a’p(p - l)z2’-2 - f f P Z  2 2 4 - 2  = a424P - a’z’P(pzY - y z y  et 

From these equations we easily see that the only choice is 

The calculation of the coefficients a, p ,  y in (18) is somewhat more complicated. From 
(19) we have 

a’ = a4 - u2(p - y)’ et cyc. (22) 
After some manipulation we find that the only possible choice is 

( Y = p  = y = * l .  (23) 
Therefore the result for the dominant behaviour to leading order in powers of z is 

U = fz-1 U =  *z-’ w = *z-1. (24) 

II = 012-1 + az’-’ (25) 

Now we proceed to find the resonances. For this we substitute 

where a’ = I, into the field equations (17). We find that r = -1,Z. The coefficients a, b 
and c are arbitrary and~we find the following four-parameter solutions 

U = uz-’ + bz’-] w = olz-’ + czr-1 

1 
10 

1 + uz’ + -[7a2 - (b - c)’1z4 

1 + %[31a3 - (4(b + c) + 7 a ) ( b  - c)’]z6 + . . . 
1 

I O  
bz’ + -[7b2 - (c  - a)’]z4 

1 1 + ?ij[3lb3-(4(c+u)+7b)(c-a)’]z6+ ... 

1 
Z 10 

1 + CZ’ + -[7~’ - (0 - b)*]z4 

1 1 + %[31c3 - (4(a + b )  + 7c)(a - b)’]z6 + . . . , 
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Thus the Euclidean Bianchi IX model has the partial Painlev6 property. Now we turn to the 
mixmaster universe which corresponds to the analytic continuation of the field equations for 
the Euclidean case. The analysis of this case proceeds in direct analogy to the Euclidean 
case discussed above. Under the transformation (14) the field equations (4) become 

S Cotsakis and P G L Leach 

uu” - U’’ = -u4 + u2(u - w)’ et cyc. (27) 

The Painlev6 analysis proceeds as above and we simply quote the results: 

I 
Z 18 

U = ‘y ( 1  + az2 - -[az - (b - c)’]z4 

I 1 
162 

- -[3a3 - (7a - 3(b + c))(b - c)’]z6 + . . . 
2 ’  1 + 62 - -[bz - (c - a)’]z4 

18 

I 1 
162 

- -[3b3 - (7b - 3(c + a))(c - + . . . 
2 1  W = - 1 + CZ - -[cz - (a - b)’]z4 “ I  Z I8 

1 
162 - -[3C3 - (7c - 3(a + b))(a - b)’]z6 + . . . 

Equation (28) is a four-parameter solution of system (27) and means that the mixmaster 
universe passes the Painlev6 test and possesses the partial Painlev6 property in the same 
way as the Bianchi IX model does. 

5. Discussion 

The results of the previous section show clearly that the two versions of the Bianchi IX 
spacetime, Euclidean and Lorentzian, possess the partial Painlev6 property. There is a 
vast Literature on the connection between the Painlev6 property of the solutions of  a given 
dynamical system and integrability (see Bountis (1992) for a recent review and references). 
However, it is well known that the Painlev6 test is, in general, only a necessary condition 
for the integrability of a physical system (see also in this connection Cotsakis (1990)). 

With this reservation in mind we may conclude that our results imply that the mixmaster 
universe may not be completely chaotic for, if it were, it should not have passed the Painlev6 
test. We notice that all previous claims relating to the chaoticity in the mixmaster dynamics 
are either approximate (BKL analytic Solutions) or do not take into account the full number 
of degrees of freedom. For instance, the well known ergodic results (Barrow 1982) that gave 
the first connection between the mixmaster oscillations and the qccurrence of chaos in the 
mixmaster universe were based on the assumption that the Poincad map for the mixmaster 
dynamics was one-dimensional. However, the full system has clearly three degrees of 
freedom and so it cannot be fully described by a one-dimensional return mapping. 

Almost all recent numerical experiments point to the fact that the Liapunov exponents 
for the mixmaster universe go quickly to zero as we approach the initial singularity at t = 0. 
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This means that the chaotic properties of the mixmaster universe disappear as f + 0 and a 
monotonic non-chaotic approach to the singularity occurs. 

On the other hand, our analysis is not based on any approximations like those used in 
constructing analytic solutions, maps etc and, in this sense, it complements and reinforces 
the numerical results and points to the integrability of the mixmaster dynamics. If the 
mixmaster universe has the partial Painlevd properly, this may imply that the full system is 
not chaotic near the initial singularity. Indeed our results support the numerical evidence of 
Hobill et a1 (1990) mentioned in the introduction. The partial Painlevd property suggests 
that the mixmaster universe is integrable on a hyperline in the six-dimensional phase space. 
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